We want to construct a "reliable" power system - a system that has the ability to survive a casualty or cascade of damage. We model a circuit consisting of 2 power supplies, 2 loads, and cables with cable resistances.
Given the circuit above, we use nodal analysis to find the two unknown voltages V2, V3.
CALCULATIONS
Nodal equations:
(V2-Vbatt1)/Rc1 + (V2-V3)/Rc2 + (V2)/RL1 = 0
(V3-V2)/Rc2 + (V3-V4)/Rc3 + V3/RL2 = 0
where: Rc1 = 100 ohms, Rc2=Rc3= 220 ohms, RL1=RL2=1 kohm, Vbatt1 = 12V, Vbatt2= 9V.
Solving the two equations: V2 = 10.2 V, V3 = 8.7 V
Next, we find the current leaving each battery & the power supplied by each battery.
Ibatt1= (Vbatt1-V2)/Rc1 = 0.018 A = 18mA
Ibatt2 = (Vbatt2-V3)/Rc3= 0.014 A = 14mA
Psupp = Vi
Pbatt1= 0.216 W
Pbatt2= 0.126 W
Data
Components Data Table
Component | Nominal Val | Measured Val | Power/Current Rating |
Rc1 | 100 ohms | 98.2 ohms | 0.25 W |
Rc2 | 220 ohms | 217 ohms | .0125 W |
Rc3 | 220 ohms | 217 ohms | .0125 W |
RL1 | 1 kohm | 976 ohms | .0125 W |
RL2 | 1 kohm | 979 ohms | .0125 W |
Vbatt1 | 12 V | 12.07 V | 2A |
Vbatt2 | 9 V | 9.08 V | 2A |
Experimental Values Data Table
Variable | Theoretical Val | Measured Val | Percent Error |
Ibatt1 | 0.017 A | 17.4 mA | |
Ibatt2 | 0.0014 A | 12 mA | |
V2 | 10.2 V | 10.32 | |
V3 | 8.7 V | 8.7 |
Next, we calculate the power delivered by the two batteries:
Pbatt1 - 17.4mA*(12.07V) = 0.210 W
Pbatt2 - 12mA*(9.08V) = 0.109 W
Finally, assume we change the problem: suppose V2=V3=9V. Use the nodal equations to find the required battery voltages Vbatt1, Vbatt2.
Vbatt1 = 9.9 V
Vbatt2 = 10.8 V
Implement the circuit using the new battery voltages and record the achieved node voltages and battery currents.
V2 = 8.96 V
V3 = 8.79 V
Ibatt1 = 9.48 mA
Ibatt2 = 8.24 mA
No comments:
Post a Comment